Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 146: 109415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296004

RESUMO

It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Animais , Células Matadoras Naturais , Linfócitos T Auxiliares-Indutores , Tecido Linfoide , Imunidade Adaptativa , Mamíferos
2.
Viruses ; 15(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37376621

RESUMO

The paper presents virophages, which, like their host, giant viruses, are "new" infectious agents whose role in nature, including mammalian health, is important. Virophages, along with their protozoan and algal hosts, are found in fresh inland waters and oceanic and marine waters, including thermal waters and deep-sea vents, as well as in soil, plants, and in humans and animals (ruminants). Representing "superparasitism", almost all of the 39 described virophages (except Zamilon) interact negatively with giant viruses by affecting their replication and morphogenesis and their "adaptive immunity". This causes them to become regulators and, at the same time, defenders of the host of giant viruses protozoa and algae, which are organisms that determine the homeostasis of the aquatic environment. They are classified in the family Lavidaviridae with two genus (Sputnikovirus, Mavirus). However, in 2023, a proposal was presented that they should form the class Maveriviricetes, with four orders and seven families. Their specific structure, including their microsatellite (SSR-Simple Sequence Repeats) and the CVV (cell-virus-virophage, or transpovirion) system described with them, as well as their function, makes them, together with the biological features of giant viruses, form the basis for discussing the existence of a fourth domain in addition to Bacteria, Archaea, and Eukaryota. The paper also presents the hypothetical possibility of using them as a vector for vaccine antigens.


Assuntos
Vírus Gigantes , Virófagos , Humanos , Animais , Genoma Viral , Eucariotos/genética , Vírus Gigantes/genética , Filogenia , Mamíferos
5.
Fish Shellfish Immunol ; 133: 108572, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36717066

RESUMO

The paper presents the problem of intestinal mucosa immunity in teleost fish. The immunity of the intestinal mucosa in teleost fish depends on the elements and mechanisms with different organizational/structural and functional properties than in mammals. The organization of the elements of intestinal mucosal immunitya in these animals is associated with the presence of immune cells that fulfil the functions assigned to the induction and effector sites of mucosal immunity in mammals; they are located at various histological sites of the mucosa - in the lamina propria (LP) and in the surface epithelium. The presence of mucosa-associated lymphoid tissue (MALT) has not been demonstrated in teleost fish, and the terminology used in relation to the structure and function of the mucosa immunity components in teleost fish is inadequate. In this article, we review the knowledge of intestinal mucosal immunity in teleost fish, with great potential for knowledge and practical applications especially in the field of epidemiological safety. We discuss the organization and functional properties of the elements that determine this immunity, according to current data and taking into account the tissue definition and terminology adopted by the Society for Mucosal Immunology General Assembly (13th ICMI in Tokyo, 2007).


Assuntos
Peixes , Mucosa Intestinal , Animais , Intestinos , Imunidade nas Mucosas , Mamíferos
6.
Scand J Immunol ; 97(5): e13251, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36583598

RESUMO

This paper presents the role of macrophage efferocytosis, the process of elimination of apoptotic bodies-elements formed during vascular atherosclerosis. The mechanisms of macrophage efferocytosis are presented, introducing the specific signals of this process, that is, 'find me', 'eat me' and 'don't eat me'. The role of the process of efferocytosis in the formation of vascular atherosclerosis is also presented, including the factors and mechanisms that determine it, as well as the factors that determine the maintenance of homeostasis in the vessels, including the formation of vascular atherosclerosis.


Assuntos
Apoptose , Aterosclerose , Humanos , Fagocitose , Macrófagos
7.
Front Immunol ; 13: 902941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720291

RESUMO

Haematopoiesis in fish and mammals is a complex process, and many aspects regarding its model and the differentiation of haematopoietic stem cells (HSCs) still remain enigmatic despite advanced studies. The effects of microenvironmental factors or HSCs niche and signalling pathways on haematopoiesis are also unclear. This review presents Danio rerio as a model organism for studies on haematopoiesis in vertebrates and discusses the development of this process during the embryonic period and in adult fish. It describes the role of the microenvironment of the haematopoietic process in regulating the formation and function of HSCs/HSPCs (hematopoietic stem/progenitor cells) and highlights facts and research areas important for haematopoiesis in fish and mammals.


Assuntos
Hematopoese , Peixe-Zebra , Animais , Diferenciação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Mamíferos
8.
Vet Res Commun ; 46(1): 233-242, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34713305

RESUMO

Lagovirus europaeus/GI.1 causes a fatal viral condition in rabbits characterized by acute viral hepatitis and disseminated intravascular coagulation. Due to rapid viral and environmental changes variants (Lagovirus europaeus/GI.1a and GI.2) have appeared and few immunological studies were performed. The aim of the study was to determine innate and adaptive immunity parameters in rabbits infected with six Lagovirus europeus/GI.1a viruses. To achieve the goal several methods were used, i.e. cytometry, microscopy, biochemical and cytochemical tests, spectrophotometry. The results show that three immunotypes exists among the studied strains and they differ in innate (mainly) and adaptive immunity, partly depending on hemagglutination. The peak of changes is 24 h post infection in phagocytosis markers of polymorphonuclear cells and CD8+ T cells. Lagovirus europaeus/GI.1a strains differ from Lagovirus europaeus/GI.1 in terms of immunological response based on our previous work concerning the same parameters in immunological response against this disease.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Lagovirus , Imunidade Adaptativa , Animais , Linfócitos T CD8-Positivos , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Filogenia , Coelhos
9.
Front Immunol ; 12: 770436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970260

RESUMO

The article presents the function of platelets in inflammation as well as in bacterial and viral infections, which are the result of their reaction with the endovascular environment, including cells of damaged vascular endothelium and cells of the immune system. This role of platelets is conditioned by biologically active substances present in their granules and in their specific structures - EV (extracellular vesicles).


Assuntos
Infecções Bacterianas/imunologia , Plaquetas/imunologia , Vesículas Extracelulares/imunologia , Sistema Imunitário/imunologia , Inflamação/imunologia , Viroses/imunologia , Infecções Bacterianas/microbiologia , Plaquetas/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Humanos , Sistema Imunitário/microbiologia , Sistema Imunitário/virologia , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Modelos Imunológicos , Transdução de Sinais/imunologia , Viroses/virologia
10.
Fish Shellfish Immunol ; 115: 95-103, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058353

RESUMO

Immunological memory can be regarded as the key aspect of adaptive immunity, i.e. a specific response to first contact with an antigen, which in mammals is determined by the properties of T, B and NK cells. Re-exposure to the same antigen results in a more rapid response of the activated specific cells, which have a unique property that is the immunological memory acquired upon first contact with the antigen. Such a state of immune activity is also to be understood as related to "altered behavior of the immune system" due to genetic alterations, presumably maintained independently of the antigen. It also indicates a possible alternative mechanism of maintaining the immune state at a low level of the immune response, "directed" by an antigen or dependent on an antigen, associated with repeated exposure to the same antigen from time to time, as well as the concept of innate immune memory, associated with epigenetic reprogramming of myeloid cells, i.e. macrophages and NK cells. Studies on Teleostei have provided evidence for the presence of immunological memory determined by T and B cells and a secondary response stronger than the primary response. Research has also demonstrated that in these animals macrophages and NK-like cells (similar to mammalian NK cells) are able to respond when re-exposed to the same antigen. Regardless of previous reports on immunological memory in teleost fish, many reactions and mechanisms related to this ability require further investigation. The very nature of immunological memory and the activity of cells involved in this process, in particular macrophages and NK-like cells, need to be explained. This paper presents problems associated with adaptive and innate immune memory in teleost fish and characteristics of cells associated with this ability.


Assuntos
Peixes/imunologia , Imunidade Inata , Memória Imunológica , Animais
11.
Arch Med Sci ; 17(1): 196-206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488872

RESUMO

Innate lymphoid cells (ILCs) are a recently described group of immune cells that can regulate homeostasis and protect mammalian organisms, including humans, from infections and diseases. Considering this, ILC research is still ongoing to better understand the biology of these cells and their roles in the human body. ILCs are a multifunctional group of immune cells, making it important for the medical community to be familiar with the latest research about the ILC families and their functions in selected disease states, such as cancer formation, metabolic disorders and inflammation. By discovering the roles of ILC populations and their participation in many disorders, we can improve disease diagnostics and patient healthcare.

12.
Fish Shellfish Immunol ; 110: 35-43, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387659

RESUMO

Interferons (IFNs) are proteins of vital importance in the body's immune response. They are formed in different types of cells and have been found in fish, amphibians, reptiles and mammals. Two types of IFN have been found in ray-finned fish (Superclass: Osteichthyes, Class: Actinopterygii) so far, i.e. IFN type I (IFN I) and IFN type II (IFN II), while the presence of IFN type III (IFN III), which is found in phylogenetically older cartilaginous fishes, was not confirmed in this taxonomic group of vertebrates. Currently, type I IFN in Actinopterygii is divided into three groups, I, II and III, within which there are subgroups. These cytokines in these animals show primarily antiviral activity through the use of a signalling pathway JAK-STAT (Janus kinases - Signal transducer and activator of transcription) and the ability to induce ISG (IFN-stimulated genes) expression, which contain ISRE complexes (IFN-stimulated response elements). On the other hand, in Perciformes and Cyprinidae, it was found that type I/I interferons also participate in the antimicrobial response, inter alia, by inducing the expression of the inducible nitric oxide synthase (iNOS) and influencing the production of reactive oxygen species (ROS) in cells carrying out the phagocytosis process.


Assuntos
Evolução Molecular , Peixes/genética , Peixes/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia
13.
Front Immunol ; 11: 1914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072066

RESUMO

Red blood cells (RBCs)-erythrocytes-of Osteichthyes are primarily known for their involvement in the process of gas exchange and respiration. Currently, physiological properties of RCBs in fish should also include their ability to participate in defense processes as part of the innate and adaptive immune mechanisms. In response to viruses, bacteria, and fungi or recombinant nanoparticles, they can modulate expression of genes responsible for immune reactions, influence activity of leukocytes, and produce cytokines, antimicrobial peptides, and paracrine intercellular signaling molecules. Via the complement system (CR1 receptor) and owing to their phagocytic properties (erythrophagocytosis), RBCs of Osteichthyes can eliminate pathogens. In addition, they are probably involved in the immune response as antigen-presenting cells via major histocompatibility complex class II antigens.


Assuntos
Imunidade Adaptativa , Infecções Bacterianas/veterinária , Eritrócitos/imunologia , Doenças dos Peixes/imunologia , Peixes/imunologia , Imunidade Inata , Micoses/veterinária , Viroses/veterinária , Animais , Infecções Bacterianas/sangue , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Caraciformes , Eritrócitos/metabolismo , Doenças dos Peixes/sangue , Doenças dos Peixes/virologia , Peixes/sangue , Interações Hospedeiro-Patógeno , Micoses/sangue , Micoses/imunologia , Micoses/microbiologia , Fagocitose , Viroses/sangue , Viroses/imunologia , Viroses/virologia
14.
J Vet Res ; 64(1): 127-136, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258809

RESUMO

Based on analysis of available genome sequences, five gene lineages of MHC class I molecules (MHC I-U, -Z, -S, -L and -P) and one gene lineage of MHC class II molecules (MHC II-D) have been identified in Osteichthyes. In the latter lineage, three MHC II molecule sublineages have been identified (MHC II-A, -B and -E). As regards MHC class I molecules in Osteichthyes, it is important to take note of the fact that the lineages U and Z in MHC I genes have been identified in almost all fish species examined so far. Phylogenetic studies into MHC II molecule genes of sublineages A and B suggest that they may be descended from the genes of the sublineage named A/B that have been identified in spotted gar (Lepisosteus oculatus). The sublineage E genes of MHC II molecules, which represent the group of non-polymorphic genes with poor expression in the tissues connected with the immune system, are present in primitive fish, i.e. in paddlefish, sturgeons and spotted gar (Lepisosteus oculatus), as well as in cyprinids (Cyprinidae), Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss). Full elucidation of the details relating to the organisation and functioning of the particular components of the major histocompatibility complex in Osteichthyes can advance the understanding of the evolution of the MHC molecule genes and the immune mechanism.

15.
Cent Eur J Immunol ; 44(2): 201-205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31530990

RESUMO

Melanomacrophages (MMs) are phagocytizing cells with high amounts of pigments including melanin which can be found in a number of cold-blooded species. In Osteichthyes, these cells cluster to form so-called melanomacrophage centres (MMCs), which are predominantly present in the stroma of hematopoietic and lymphoid tissues, that is, in the kidney and spleen. The functionality of MMs and MMCs results from their involvement and role in the defence reactions, related to both the innate and the adaptive immune mechanisms, and in processes unrelated to defence functions as well. There is evidence that MMCs are structurally and functionally similar to mammals' germinal centres (GCs). It appears that mature IgM+ B cells in Osteichthyes can be the equivalent of mIgM+ centrocytes in mammals, whereas MMs can be, in terms of the function, the equivalent of follicular dendritic cells (FDCs), and MMCs can be, in terms of clustered specific cells, the equivalent of GCs. This paper presents selected facts about the structural and functional similarity between GCs and MMCs and about the involvement and role of MMCs and MMs in the immune response. The facts help get a proper picture of the location of MMs and MMCs within the structure of the fish immune system, also in the context of their evolutionary relationship with GCs and of the possibility of pointing out the evolutionary closeness between MMCs in Osteichthyes and GCs in mammals.

16.
Virus Genes ; 55(5): 574-591, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31290063

RESUMO

The discovery of giant viruses has revolutionised the knowledge on viruses and transformed the idea of three domains of life. Here, we discuss the known protozoal giant viruses and their potential to infect also humans and animals.


Assuntos
Amoeba/virologia , Vírus Gigantes/crescimento & desenvolvimento , Estramenópilas/virologia , Viroses/veterinária , Viroses/virologia , Animais , Vírus Gigantes/patogenicidade , Humanos
17.
J Inflamm (Lond) ; 16: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297037

RESUMO

The discovery of the NET network (neutrophil extracellular trap) has revolutionized the perception of defense mechanisms used by neutrophils in infections and non-infectious states, as this mechanism proves the complexity of the ways in which neutrophils can act in the organism. The paper describes the NET network and its participation in bacterial, viral, fungal and parasitic infections, both in a positive and a negative aspect. In addition, attention was paid to the participation of NETs in the course of autoimmune diseases, cancer, as well as its impact on pregnancy and fertility in mammals.

18.
J Vet Res ; 63(1): 123-131, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30989144

RESUMO

Thrombocytes in vertebrates other than mammals, inter alia in fish, are analogues of platelets in mammals. In Osteichthyes, these cells take part in haemostatic processes, including aggregation and release reactions in cases of blood vessel damage, and in the immune response development as well. This paper discusses the development of thrombocytes in Osteichthyes, taking into account the need to make changes to the concept of grouping progenitor cells as suggested in the literature. The following pages present the morphological and cytochemical properties of thrombocytes as well as their defence functions, and also point out differences between thrombocytes in fish and platelets in mammals. The paper further highlights the level of thrombocytes' immune activity observed in fish and based on an increased proportion of these cells in response to antigenic stimulation, on morphological shifts towards forms characteristic of dendritic cells after antigenic stimulation and on the presence of surface structures and cytokines released through, inter alia, gene expression of TLR receptors, MHC class II protein-coding genes and pro-inflammatory cytokines. The study also points out the need to recognise thrombocytes in Osteichthyes as specialised immune cells conditioning non-specific immune mechanisms and playing an important role in affecting adaptive immune mechanisms.

19.
Cent Eur J Immunol ; 43(3): 335-340, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588178

RESUMO

The fish immune system is extremely complex and has considerable adaptive potential. In Osteichthyes, the system is formed by lymphopoietic organs which are important for the differentiation and maturation of the immune system cells. These organs include the anterior kidney (phronephros), the thymus, the spleen, the posterior kidney (mesonephros), and mucosa-associated lymphoid tissues (MALT). Apart from the lymphocytic organs and the MALT system, the immune system components include defensive cells and their products. Those identified in fish include, inter alia, monocytes/macrophages, melanomacrophages, neutrophilic granulocytes, thrombocytes, B cells, plasma cells, and T cells. The roles of the individual components of the organisation of the immune system, the organs, and lymphoid tissue as well as the constituents conditioning the innate and adaptive immunity mechanisms are considered equally important, especially in the context of functional interdependence. The progress in the exploration of the processes of specific humoral immunity in Osteichthyes and the possibilities of their practical application is increasingly promising in view of the expected need for protection of fish against diseases. The paper discusses selected issues concerning recent knowledge about haematopoiesis of B cells, plasmablasts, plasma cells, and immunoglobulins (IgM, IgD, IgT/IgZ).

20.
Acta Biochim Pol ; 65(4): 487-496, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30444087

RESUMO

Five years after being discovered in 2003, some giant viruses were demonstrated to play a role of the hosts for virophages, their parasites, setting out a novel and yet unknown regulatory mechanism of the giant viruses presence in an aqueous. So far, 20 virophages have been registered and 13 of them have been described as a metagenomic material, which indirectly impacts the number of single- and multi-cell organisms, the environment where giant viruses replicate.


Assuntos
Vírus Gigantes/fisiologia , Virófagos/fisiologia , Genoma Viral , Vírus Gigantes/classificação , Vírus Gigantes/genética , Metagenômica , Filogenia , Virófagos/classificação , Virófagos/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...